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Polynomial Interpolation: Lagrange versus Newton 

By Wilhelm Werner 

Abstract. We show that the Lagrangian form of the interpolating polynomial can be calculated 
with the same number of arithmetic operations as the Newtonian form. 

1. Introduction. It is well known that 

*? *? t - t 

(1.1) p(t) = E f1Li(t), Li(t) = ]7J ' i = O(l)n, 
1=o j=0 ti - t 

jii 

is a representation of the unique interpolating polynomial p E Hn (= space of nth 
degree complex polynomials) corresponding to the data (ti, fi), i = O(I)n, ti 0 tj for 

. 
I. 

If we set 

(1.2) wi:= I/ (ti -t), i = O(I)n, 

then (1.1) can be written as 

(1.1') p(t) = , wif7 (t - ti) 
/=0 J=0 

ji*i 

At first glance it seems that about n2 arithmetic operations (i.e. multiplications or 
divisions) are necessary to compute the coefficients wi, i = O(I)n, of this Lagrangian 
form of p (cf. Knuth [5, p. 484], Winrich [12]), whereas the coefficients of the 
Newtonian form of p, 

11 i-i 

(1.3) p(t) = E aiJ7 (t - tj) 
i=0 J=0 

can be computed with about n 2/2 operations via the algorithm of divided dif- 
ferences. It is shown below that n 2/2 operations are sufficient for the computation 
of the coefficients wi, i = O(I)n, too. 

The form (1.1), (1.1') of the interpolating polynomial is of theoretical interest 
only; for practical purposes it is advisable to use the barycentric representation, 
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which is "eminently suitable for machine computation" (Henrici [3, p. 237]): 

E 0 - t ti 

(1.4 = !n W if t 7tk, k = O(I)n, 
(1.4) p (t) W1f, s 01n 

i=O tti 

fk if t =tk, k = 0(I)n. 

This form of the interpolating polynomial which is attributed to Taylor [10] exhibits 
a remarkable numerical stability (cf. Henrici [3, p. 237 ff.]) which is mainly due to 
the fact that the interpolation property is preserved even if the coefficients wi, 
i = O(1)n, are perturbed; this is not the case for other representations of the 
interpolating polynomial, e.g. (1.1'). For various important distributions of the 
interpolating points ti, i = 0(1)n, it is possible to compute the coefficients wi, 

= 0(1)n, analytically (cf. Henrici [3, p. 237 ff.]). 
One evaluation of (1.4) requires 2n + 3 multiplications (resp. divisions) and 

3n + 1 additions (resp. subtractions); one evaluation of (1.3) requires but n multipli- 
cations and 2n additions (resp. subtractions), so that there remains a slight ad- 
vantage for the Newtonian form of the interpolating polynomial which may be 
significant if the interpolating polynomial must be evaluated many times. If, 
however, different interpolating polynomials using the same node points are to be 
evaluated, then the barycentric form (1.4) of the interpolating polynomial should be 
preferred. 

2. Conversion of the Newtonian Form of the Interpolating Polynomial into the 
Lagrangian Form. Forf = 1, i = 0(1)n, (1.1') reads 

n n 

(2.1) 1= H (t-ti) 
i=O j=O 

j*i 

so that for t # tj, j = 0(1)n, 

(2.2) Hj,=o( - tj) j=O t - 

If we consider the left-hand side of (2.1) as a polynomial in Newtonian form, we 
may generalize the problem of computing the coefficients wi, i = 0(1)n, as follows: 

Given p E H1 n in Newtonian form (1.3); compute the 
Lagrangian form of p, 

n n 

(2.3) p(t) = E ai H7 (t - ti), 
i=0 j=O 

j*i 

where av := wip (ti), i = 0(1)n. 

By a well-known result on divided differences (cf. Milne-Thompson [7, p. 7], 
Steffensen [9, p. 15]) one has: 

k p(t1) k n 

ak = , H=(t E = i H1 (ti- t1), k = 0(1)n, 
i=o nJ=o;Oi(ti- tj) i=0 j=k+l 
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i.e. our problem is equivalent to the solution of the following triangular system of 
linear equations: 

ao (to - tj) 0 0 0 10 
J= I 

a1 1 7(to- t) 17I(1-tj) 0 0 a 

(2.4) a2 - 
n 

1I( to -tj ) I1 (tl -tj) H1(t2-tj) 0 0 02 
J=3 j=3 J3 

an_-1J to- tn ti tn t2 1 tn . ) t a.n 

a n 1 11 agn 

This system may be solved by Gauss-elimination; as will become more clear later, it 
is however reasonable to perform the elimination process in a different order of 
succession: 

1. Divide the first equation of (2.4) by to - t1; set 

a('):= aol(to -ti). 

2. Subtract the first equation from the second; set 

a(') := a,l-a('). a1 - 

3. Divide the first equation by to - t2; set 

a&):= a (1)At -t2). 

4. Subtract the first equation from the third; set 

a(') := a2 - a&2) a 2 - 

5. Divide the second equation by t1 - t2; set 

a(2) := a(1)/(tl - t2). 

6. Subtract the second equation from the third; set 
a(2)2:= a(') - a(2) 

Continuing in this way we get the algorithm 

a() := ak, k = O(1)n, 

(2.5) a('):= a('1)/(tk - ti) k 
(2 .5) a(k?l) k- akk - 4i) ) = O(I)i - 1, i = (I) n, 

v:=ai(n), O(I)n . 

Remarks. (a) Algorithm (2.5) requires n(n + 1) divisions and n(n + 1) additions 
for the transformation of a Newtonian polynomial into its Lagrangian representa- 
tion. 

(b) (2.5) was used in [11] for an economical realization of the Durand-Kerner 
method for the simultaneous determination of polynomial roots. El 

The system (2.4) may also be used to solve the converse problem 

"Given p E IIn in Lagrangian form (2.3); compute the coefficients ai, 
i = O(I)n, of the Newtonian representation (1.3)" 
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if ti / tj for i 0 j; this problem is solved by the algorithm 

i(o) : ig, i = O(I)n, 
,?-k 

(Y k n - 

(2.6) =E k =0(l)n, 
(Yi(k+) =(ti - tnfk)1 i = n - k(-1)0 

ai:= ,i(n+l-i) i = 0(1) n. 

3. Efficient Computation of the Lagrangian Form of the Interpolating Polynomial. 
An application of algorithm (2.5) to (2.1) immediately yields an algorithm for the 
efficient computation of the quantities wi, i = O(I)n, which were defined in (1.2): 

a(?) := 1, a(?) := O, k = I(I)n, 

a('):= a('-'/(tk - t-) 

(3.1) a(k+l)- ak )- aj J I ' k = O(1)i - 1, i = I(I)n, 

wi:= a (n), i = O(l) n. 

Thus we have shown that the coefficients of the Lagrangian form of the interpolat- 
ing polynomial can be calculated with approximately n 2/2 divisions and n2 addi- 
tions (resp. subtractions); note that a similar operation count is valid for the 
algorithm of divided differences which computes the coefficients of the Newtonian 
form of the interpolating polynomial; cf. Winrich [12]. 

There is one objection against the Lagrangian form not mentioned so far: it is the 
assertion that one must know all the data in advance and repeat the computations if 
interpolation points are added subsequently. On the other hand, it is easy to add a row 
in the scheme of divided differences if an interpolation point is added; in the 
following, a direct derivation of (3.1) reveals that (3.1) has the same desirable 
property. Let pn E Hn be the unique solution of the interpolation problem 

"Given (ti, fi), i = 0(1) n, ti 0 tj for i 0 j; compute pn E HI-, 

1? n 
(Pn ) Pn (t) =E am 

H I (t -tj), 

such that pn(t)t= fi,i= O(l)n." 

A natural question arises: How can one compute efficiently the solution a(i)k 
k = O(1)i, of Pi, if the coefficients a('1l, k = O(1)i - 1, are known? 

By the definition of a (cf. (1.1'), (1.2)) it is obvious that 
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For the computation of ai'i use (2.2): 

a( I H (ti - tj) (by definition) 
j=O 

i-i a(i-1) 
E t -k (by (2.2)) 

k=O i 
- 

k 
i-l 

= - , a(ja (by (3.2)). 
k=O 

The successive solution of the problems PI0, P1,. . ., Pn via these formulas then 
obviously corresponds to algorithm (3.1); this derivation clearly exhibits the fact that 
the addition of interpolation points presents no difficulties. 

Of some practical importance is the special Hermite interpolating polynomial p 
which satisfies 

p(t) = f;, p'(t) =f f', j = 0(1)n. 

The barycentric form of the interpolating polynomial corresponding to these data is 

n 

_W _ W__ : ( t - t ( t - t - + j t - t 1) 

(3.3) p(t)n if t 0 
tt j = 0(t )n, 

fij if t = t1,j = 0(1) n, 

where the quantities wi are defined as in (1.2) and 
n1 

vi:= 2wi E t -t 
i 0(l) n 

j=o 
jii 

(cf. Henrici [3, p. 2551, Bulirsch and Rutishauser [1, p. 248-2501). Using algorithm (3.1) 
one may compute the quantities wi, vi, i = 0(1)n, simultaneously with about n2/2 
multiplications and n2/2 divisions: 

a(o) := 1, a(?) := 0, k = I(I)n, 

MO):= 0, k = 0(l) n, 

qik:= 1/(tk - ti) 

(3.4) a$k) := ak) - a) \ k =0O(l)i - 1, ia=1(1)n, 
ba'):= bqi + qk | 

(k+l) = k ) 

ai- a( a k) i = 0(1)n. w2w= a n)J 

One evaluation of p given by (3.3) then requires about 4n multiplications and 
n divisions. Note that the algorithm of divided differences (which must be 
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slightly modified to include the case of confluent interpolating points: cf. 
Bulirsch and Rutishauser [1, p. 245 ff.]) requires about 2n2 divisions for the computa- 
tion of the coefficients of the corresponding Newtonian form of p and thus is much 
less efficient than the above algorithm (3.4). 

4. On the Numerical Stability of the Barycentric Form of the Interpolating 
Polynomial. Due to rounding errors algorithm (3.1) usually produces coefficients - 

i = O(1)n, which differ more or less from the exact coefficients wi, i = O(1)n, defined 
in (1.2). It is therefore reasonable to study the influence of these errors on the 
interpolation process. In contrast to other interpolation formulas, the interpolation 
property of the barycentric formula (1.4) is not destroyed by perturbations of the 
coefficients wi, i = O(1)n, as long as the computed values of wi, i = O(1)n, are 
different from zero. The perturbation of the exact coefficients, however, has the 
effect that the function 

p(t): I n Wt if t + t1,j = O(1)n, 

Ii= ot -ti 

t fi if t = tj,j = 0(1)n 

(which is continuous in tj, j = O(1)n), is usually no longer a polynomial, but a 
rational function, i.e. the evaluation of the barycentric formula with perturbed 
coefficients corresponds to an exact evaluation of some rational interpolation 
formula. The error of this (rational) interpolation process is described in the 
following 

PROPOSITION (C. SCHNEIDER [8]). Let 

(i) ai e R \ {O}, i = O(I)n, 
(ii) f e C(R), 

(iii) q E rLng q(t):= En 0 a1i1y=0.1j1(t - 
(iv) 

p(t):= nif t + = O(1)n, 

|,\f; if t = tj,j= O(1)n. 

If q(t) 0 0, then 

( ) ( ) fIn o(t - tj) () 

(Here h[tO ,... , tk ] denotes the kth divided difference of a function h with respect to 
to ... .tk); if, furthermore, q E Jlm for some m < n, then the interpolating function p 
is exact for any f E n1-m 



POLYNOMIAL INTERPOLATION: LAGRANGE VERSUS NEWTON 211 

Proof. If q(t) 0 0, then 
n n t- t 

Eq(tj)f Hn t-t 
p(t) = i=0 J=O;PJ/i i 

q(t) 

so that 
n n t- t 

q(t)f(t) - E q(ti)fi H 
f(t) -p(t) = i q j=o;jsi i - 

n = ?( i )( fq ) I tO , tl q** tn , t] q(t) q(t 

(by the usual remainder formula of polynomial interpolation). The interpolation 
formula under consideration therefore is exact for any function f such that fq E Un. 

Remark. (a) Note that algorithm (3.1) preserves the property 

a (n) = 0, 
k=0 

even if the individual coefficients a(n) k = 0(1)n, are perturbed by rounding errors; 
the corresponding polynomial q introduced in the above proposition thus is of 
degree n - 1 at most. Algorithm (3.1) combined with the barycentric formula (1.4) 
thus represents an interpolation process which is exact at least in F1J even in the 
presence of rounding errors. 

(b) The numerical stability of the algorithm (3.1) itself strongly depends on an 
appropriate arrangement of the interpolating points tO, t1, .. ., tn; extensive numerical 
experiments indicate that one should arrange the nodes ti, i = 0(1)n, such that 

/tL- t 01)I,- t11) >. y I,-tj, where:= ( L t),/(n + 1). 

5. Numerical Results. In order to demonstrate effects caused by rounding errors 
we use two examples where the interpolation process converges very slowly; it should 
be pointed out that our results are not typical for everyday interpolation problems 
where usually all algorithms which we discuss below yield satisfactory results. We 
use the following notations: 

(a) Algorithm "LAGRANGE (1.2)" consists of 
1. computation of the quantities wi, i = O(1)n, according to the definition (1.2); 
2. evaluation of the barycentric form of the interpolating polynomial (1.4). 

(b) Algorithm "LAGRANGE (3.1)" consists of 
1. computation of the quantities wi, i = 0(1)n, according to (3.1); 
2. evaluation of the barycentric form of the interpolating polynomial (1.4). 

(c) Algorithm " NEWTON/HORNER" consists of 
1. computation of the Newtonian form of the interpolating polynomial by the 

algorithm of divided differences; 
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2. evaluation of the interpolating polynomial by Horner's algorithm. 
A summary of our numerical experience with the above algorithms is the 

following: 
1. The algorithm LAGRANGE (3.1) is in general not as stable as LAGRANGE 

(1.2) (or e.g. the Neville-Aitken algorithm). 
2. As is the case for the NEWTON/HORNER-algorithm, the numerical stability 

of LAGRANGE (3.1) strongly depends on an appropriate arrangement of the 
interpolating points ti, i = O(1)n. If this aspect, however, is taken into account, then 
LAGRANGE (3.1) is of similar quality as LAGRANGE (1.2). It is noteworthy in 
this context that the favorable arrangements of the node points for the algorithms 
LAGRANGE (3.1) and NEWTON/HORNER are different. 

To demonstrate the influence of the arrangement of the interpolating points on 
the numerical stability we use four different arrangements: 

1. "Arrangement 1": to < t1 < ... < tn. 
2. "Arrangement 2": It - tol < It - tll < . < It - tn,, where t is that point 

where the interpolating polynomial is to be evaluated. 
3. "Arrangement 3": Replace" < " by " > " in Arrangement 2. 
4. "Arrangement 4": 1y - tOl >I1 - tll > /I - tnl, where 

n 

,A:= _ti (n+1). 
i=o 

Remarks. (a) Arrangement 2 is recommended by Hildebrand [4, p. 50], and (with 
reference to [4]) by Krogh [6] for Newton interpolation; Arrangement 3 is included 
to demonstrate the effects of an inappropriate arrangement of the interpolating 
points. As was mentioned already extensive numerical experiments indicated that 
Arrangement 4 is the appropriate one for our algorithm (3.1). 

(b) Note that a change of the arrangement of the node points strongly influences 
the condition number of the matrix in (2.4). It is well-known that the condition 
number can be diminished by scaling; since the coefficients wi, i = O(1)n, can be 
replaced by -ywi, i = 0(1)n (if y # 0), in the barycentric formula (1.4), one may 
replace the interpolating points ti, i = 0(1)n, by Oti, i = 0(1)n, where 0 # 0 is 
chosen in such a way that the matrix in (2.4) contains no elements of too different 
orders of magnitude. This device actually (slightly) improved some results in our 
experiments; the influence of this kind of scaling, however, was by far not as 
significant as the influence due to the different arrangements of the interpolating 
points. 

Example 1. Approximate 

lim sin(t) + cos(t) - 1 b 
t-O t 

where pn e TI n interpolates the function 

f (t*= sin(t) + cos(t) - 1 (t # 0) 
t 

at the points 

mj = 2 sr (i = 0(1)m - 1,m + l(l)n), tm = 4 withm:= [ 2 ] ;7T 
i-rn ~ (i (1)m -1 m+1I(I)n), tm with m:= [ 1]I; 
242 
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it can be shown that 
lim f(t) = 1 = lim Pn(?) 
tO0 n -o 
t*O 

All computations were done in single as well as in double precision (27 bit resp. 62 
bit). 

The following tables contain the errors I pn(0) - 11. 

TABLE 1 (Arrangement 1) 

Single precision Double precision 

n LAGRANGE NEWTON/ LAGRANGE NEWTON/ 
(1.2) (3.1) HORNER (1.2) (3.1) HORNER 

5 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 
10 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 
15 8.o2(-6) 8.o5(-6) 7.23(-6) 8.o6(-6) 8.o6(-6) 8.o6(-6) 
20 1.66(-5) 1.57(-5) 1.14(-5) 1.67(-5) 1.67(-5) 1.67(-5) 
25 8.94(-8) 3.52(-6) 3.75(-5) 8.56(-8) 8.56(-8) 8.56(-8) 
30 2.24(-7) 1.20(-5) 2.19(-4) 2.88(-7) 2.88(-7) 2.88(-7) 
35 8.94(-8) 5.78(-4) 1.98(-3) 1.27(-9) 1.27(-9) 1.o4(-7) 
40 0.00 1.56(-3) 1.o7(-2) 5.89(-9) 5.89(-9) 1.17(-7) 
45 2.98(-8) 1.38(-2) 9.13(-2) 2.24(-11) 2.30(-11) 1.36(-6) 
50 5.96(-8) 1.13(-2) 6.71(-1) 1.32(-10) 1.13(-10) 7.87(-6) 

TABLE 2 (Arrangement 2 with t 0) 

Single precision Double precision 

n LAGRANGE NEWTON/ LAGRANGE NEWTON/ 
(1.2) (3.1) HORNER (1.2) (3.1) HORNER 

S 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 
10 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 
15 8.o3(-6) 8.o5(-6) 8.o6(-6) 8.o6(-6) 8.o6(-6) 8.o6(-6) 
20 1.66(-5) 1.66(-5) 1.67(-5) 1.67(-5) 1.67(-5) 1.67(-5) 
25 8.94(-8) 5.96(-8) 8.94(-8) 8.56(-8) 8.56(-8) 8.56(-8) 
30 2.38(-7) 4.32(-7) 2.83(-7) 2.88(-7) 2.88(-7) 2.88(-7) 
35 5.22(-8) o.oo 1.12(-7) 1.27(-9) 1.27(-9) 1.18(-7) 
40 1.49(-8) 1.86(-7) 1.12(-7) 5.89(-9) 5.89(-9) 1.18(-7) 
45 1.49(-8) 2.83(-7) 1.12(-7) 2.24(-11) 2.24(-11) 1.18(-7) 
50 1.12(-7) 1.18(-6) 1.12(-7) 1.32(-10) 1.32(-10) 1.18(-7) 

TABLE 3 (Arrangement 3 with t:= 0) 

Single precision Double precision 

LAGRANGE NEWTON/ LAGRANGE NEWTON/ n (1.2) (3.1) HORNER (1.2) (3.1) HORNER 

5 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 
10 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 
15 7.97(-6) 8.o5(-6) 7.81(-6) 8.o6(-6) 8.o6(-6) 8.o6(-6) 
20 1.67(-5). 1.67(-5) 1.64(-5) 1.67(-5) 1.67(-5) 1.67(-5) 
25 1.64(-7) 1.o4(-7) 1.13(-6) 8.56(-8) 8.56(-8) 8.56(-8) 
30 2.83(-7) 2.53(-7) 2.98(-7) 2.88(-7) 2.88(-7) 2.88(-7) 
35 5.96(-8) 7.45(-8) 9.69(-4) 1.27(-9) 1.27(-9) 9.67(-4) 
40 1.49(-8) 7.45(-8) 6.o6 5.89(-9) 5.89(-9) 6.o6 
45 5.96(-8) 1.64(-7) 8.46(+1) 2.24(-1i) 2.24(-11) 8.46(+1) 
50 9.69(-8) 9.98(-7) 3.10(+3) 1.32(-10) 1.32(-10) 3.10(+3) 



214 WILHELM WERNER 

TABLE 4 (Arrangement 4) 

Single precision Double precision 

LAGRANGE NEWTON/ LAGRANGE NEWTON/ n (1.2) (3.1) HORNER (1.2) (3.1) HORNER 

5 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 1.94(-3) 
10 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 1.44(-3) 
15 8.oo(-6) 8.o5(-6) 7.91(-6) 8.o6(-6) 8.o6(-6) 8.o6(-6) 
20 1.67(-5) 1.67(-5) 1.64(-S) 1.67(-5) 1.67(-5) 1.67(-5) 
25 1.49(-7) 5.96(-8) 2.68(-7) 8.56(-8) 8.56(-8) 8.56(-e) 
30 2.24(-7) 2.83(-7) 5.59(-7) 2.88(-7) 2.88(-7) 2.88(-7) 
35 2.98(-8) 3.73(-8) 3.25(-4) 1.27(-9) 1.27(-9) 3.24(-4) 
40 2.98(-8) 1.49(-8) 2.25 5.89(-9) 5.89(-9) 2.25 
45 1.49(-8) 0.00 3.55 2.24(-11) 2.24(-11) 3.55 
50 7.45(-8) 2.38(-7) 7.95(+2) 1.32(-10) 1.32(-10) 7.95(+2) 

As was noticed very often algorithm NEWTON/HORNER reacts much more 
sensitively to an inappropriate arrangement of the interpolating points than does the 
algorithm LAGRANGE (3.1). The conclusion that Arrangement 4 is the appropriate 
one for LAGRANGE (3.1) is confirmed by the following table which contains the 
numbers 

K ~n) ' 
max In - ' - 

I i = O(1)n 

where a(, i - O(1)n, are the exact coefficients in the barycentric representation of 
pn, and a(n), i = 0(1)n, denote those computed by algorithm (3.1). 

TABLE 5 (Influence of different arrangements on algorithm (3.1)) 

Single precision Double precision 

Arrangement Arrangement 
n 1 2 4 1 2 4 

5 1.11(-7) 2.23(-7) 5.57(-8) 1.2o(-17) 1.24(-17) 1.24(-17) 
10 5.oo(-6) 1.83(-5) 8.44(-8) 1.15(-15) 3.70(-16) 1.28(-17) 
15 3.7o(-3) 5.9o(-4) 2.5o(-7) 3.33(-14) 2.59(-15) 7.37(-18) 
20 3.10(-1) 7.49(-2) 7.4o(-7) 3.17(-11) 1.oo(-12) 1.64(-17) 
25 5.42 1.61 2.16(-6) 6.24(-9) 4.15(-11) 2.87(-17) 
30 1.o9(+1) 4.88 4.35(-6) 2.o7(-6) 8.41(-9) 3.22(-16) 
35 1.55(+1) 9.35 2.43(-5) 3.64(-4) 9.52(-8) 1.85(-1S) 
40 2.23(+1) 1.5o(+1) 1.17(-3) 4.22(-2) 7.54(-6) 5.83(-15) 
45 2.71(+1) 1.77(+1) 1.24(-3) 2.78 5.32(-4) 3.17(-14) 
50 3.64(+1) 2.39(+1) 3.66(-2) 7.92 3.o6(-1) 5.63(-13) 

Even though the computed values of a,n) i O(1)n (at least in part), differ by 
orders of magnitude from the exact coefficients for n > 30 (for Arrangements 1, 2 
and single-precision arithmetic), we achieved reasonable results in Tables 1, 2; this is 
due to the fact that the barycentric formula represents an interpolation formula even 
for "false" coefficients. 
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Example 2 (Runge's Example). As was proved by Runge (cf. Davis [2, p. 78], 
Steffensen [9, p. 35 ff]), convergence of the sequence { pn(t)}fneN, where Pn eE ln 
interpolates the function 

1 + t2 

at the equidistant nodes ti:= -5 + 10i/n, i = O(1)n, takes place for t < 3.63... 
Since we want to study numerical effects of various interpolation algorithms we do 
not take advantage of the fact that the coefficients wi, i = O(1)n, of the barycentric 
formula (1.4) can be computed explicitly (cf. Henrici [3, p. 239]). In the following 
tables we present the errors of the three interpolation algorithms under consideration 
at 

t = 2.51234567. 

As in the preceding example all computations were performed in 27-bit and 62-bit 
arithmetic for four different arrangements of the interpolating points which are 
described at the beginning of this section. 

TABLE 6 (Arrangement 1) 

Single precision Double precision 

LAGRANGE NEWTON/ LAGRANGE NEWTON/ n (1.2) (3.1) HORNER (1.2) (3.1) HORNER 

5 5.13(-1) 5.13(-1 ) 5,13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 
10 8.54(-1) 8.54(-1) 8.53(-1) 8.54(-1) 8.54(-1) 8.54(-1) 
15 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 
20 1.30(-2) 1.30(-2) 1.35(-2) 1.30(-2) 1.30(-2) 1.30(-2) 
25 1.88(-2) 2.56(-2) 2.58(-2) ".88(-2) 1.88(-2) 1.88(-2) 
30 3.28(-2) 1.16(-2) 8.o8(-2) 3.28(-2) 3.28(-2) 3.28(-2) 
35 4.65(-3) 3.oo(-5) 2.o8(-1) 4.65(-3) 4.65(-3) 4.65(-3) 
40 1.o1(-3) o.oo 2.12 1.o1(-3) 1.ol(-3) 1.ol(-3) 
45 6.6o(-4) o.oo 1.62(+1) 6.62(-4) 6.62(-4) 6.62(-4) 
50 1.26(-3) 1.36(-8) 1.34(+2) 1.26(-3) 1.27(-3) 1.26(-3) 
55 1.92(-4) 1.36(-8) 1.4o(+3) 1.92(-4) 2.29(-4) 1.92(-4) 
60 5.92(-5) 4.o9(-8) 1.53(+4) 5.87(-5) 2.67(-6) 5.88(-5) 

TABLE 7 (Arrangement 2 with t := 2.51234567) 

Single precision Double precision 

LAGRANGE NEWTON/ LAGRANGE NEWTON/ (1.2) (3.1) HORNER (1.2) (3.1) HORNER 

5 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 
10 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 
15 1. 12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 
20 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 
25 1.88(-2) 1.88(-2) 1.88(-2) 1.88(-2) 1.88(-2) 1.88(-2) 
30 3.28(-2) 3.28(-2) 3.28(-2) 3.28(-2) 3.28(-2) 3.28(-2) 
35 4.65(-3) 4.74(-3) 4.65(-3) 4.65(-3) 4.65(-3) 4.65(-3) 
40 1.ol(-3) 8.4o(-4) 1.ol(-3) 1.ol(-3) 1.ol(-3) 1.o1(-3) 
45 6.86(-4) 3.16(-3) 6.62(-4) 6.62(-4) 6.62(-4) 6.62(-4) 
50 1.19(-3) 3.82(-2) 1.26(-3) 1.26(-3) 1.26(-3) 1.26(-3) 
55 4.15(-5) 1.35(+2)! 1.93(-4) 1.92(-4) 1.92(-4) 1.92(-4) 
60 1.41(-4) 2.53(-1) 5.96(-5) 5.87(-5) 5.87(-5) 5.87(-5) 
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TABLE 8 (Arrangement 3 with t:= 2.51234567) 

Single precision Double precision 

LAGRANGE NEWTON/ LAGRANGE NEWTON/ n (1.2) (3.1) HORNER (1.2) (3.1) HORNER 

5 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 
10 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 
15 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 
20 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 
25 1.88(-2) 1.96(-2) 1.83(-2) 1.88(-2) 1.88(-2) 1.88(-2) 
30 3.28(-2) 1.44(-2) 3.7E(-2) 3.28(-2) 3.28(-2) 3.28(-2) 
35 4.65(-3) 1.ol(-5) 1.53(-2) 4.65(-3) 4.65(-3) 4.65(-3) 
40 1.ol(-3) 0.00 1.61(-1) 1.o1(-3) 1.ol(-3) 1.ol(-3) 
45 6.6o(-4) 0.00 5.96(-1) 6.62(-4) 6.62(-4) 6.62(-4) 
50 1.26(-3) 0.00 7.1o 1.26(-3) 1.27(-3) 1.26(-3) 
55 2.o2(-4) 0.00 3.60(+2) 1.92(-4) 2.23(-4) 1.92(-4) 
60 5.15(-5) 0.00 1.82(+3) 5.87(-5) 7.38(-6) 5.87(-5) 

TABLE 9 (Arrangement 4) 

Single precision Double precision 

LAGRANGE NEWTON/ LAGRANGE NEWTON/ n (1.2) (3.1) HORNER (1.2) (3.1) HORNER 

5 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 5.13(-1) 
10 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 8.54(-1) 
15 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 1.12(-1) 
20 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 1.30(-2) 
25 1.88(-2) 1.88(-2) 1.88(-2) 1.88(-2) 1.88(-2) 1.88(-2) 
30 3.28(-2) 3.28(-2) 3.28(-2) 3.28(-2) 3.28(-2) 3.28(-2) 
35 4.65(-3) 4.65(-3) 4.65(-3) 4.65(-3) 4.65(-3) 4.65(-3) 
40 1.ol(-3) 1.ol(-3) 1.ol(-3) 1.ol(-3) 1.ol(-3) 1.ol(-3) 
45 6.66(-4) 6.51(-4) 6.62(-4) 6.62(-4) 6.62(-4) 6.62(-4) 
50 1.26(-3) 1.30(-3) 1.26(-3) 1.26(-3) 1.26(-3) 1.26(-3) 
55 1.82(-4) 1.62(-4) 1.92(-4) 1.92(-4) 1.92(-4) 1.92(-4) 
60 6.77(-5) 8.o9(-5) 5.90(-5) 5.87(-5) 5.87(-5) 5.87(-5) 

Conclusions. For small degrees of the interpolating polynomial (say n < 20) the 
new interpolation algorithm introduced in this note works as satisfactorily as 
Newton interpolation does. In critical situations, however, where interpolation 
polynomials of very high degree must be evaluated, both algorithms require a special 
arrangement of the interpolating points to avoid numerical instabilities. One should 
note that the favorable arrangement of the nodes for Newton interpolation depends 
on the argument where the interpolation polynomial is to be evaluated, whereas the 
arrangement appropriate for our new algorithm depends on the interpolating points 
only. It was observed very often that Newton interpolation reacts much more 
sensitively to an inappropriate arrangement of the node points than does our new 
algorithm; this is certainly due to the fact that the barycentric formula (1.4) 
represents a reasonable interpolation formula even for perturbed coefficients. 
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